Graph Neural Networks (GNNs) have gained significant attention in recent years due to their ability to model complex relationships between entities in graph-structured data such as social networks, protein structures, and knowledge graphs. However, due to the size of real-world industrial graphs and the special architecture of GNNs, it is a long-lasting challenge for engineers and researchers to deploy GNNs on large-scale graphs, which significantly limits their applications in real-world applications. In this tutorial, we will cover the fundamental scalability challenges of GNNs, frontiers of large- scale GNNs including classic approaches and some newly emerging techniques, the evaluation and comparison of scalable GNNs, and their large-scale real-world applications. Overall, this tutorial aims to provide a systematic and comprehensive understanding of the challenges and state-of-the-art techniques for scaling GNNs. The summary and discussion on future directions will inspire engineers and researchers to explore new ideas and developments in this rapidly evolving field.