Back

FARE: Schema-Agnostic Anomaly Detection in Social Event Logs

Neil Shah
Event DSAA 2019
Research Areas Data Mining, Security

Abstract: Online social platforms are constantly under attack by bad actors. These bad actors often leverage resources (e.g. IPs, devices) under their control to attack the platform by targeting various, vulnerable endpoints (e.g. account authentication, sybil account creation, friending) which may process millions to billions of events every day. As the scale and multifacetedness of malicious behaviors grows, and new endpoints and corresponding events are utilized and processed every day, the development of fast, extensible and schema-agnostic anomaly detection approaches to enable standardized protocols for different classes of events is critical. This is a notable challenge given that practitioners often have neither time nor means to custombuild anomaly detection services for each new event class. Moreover, labeled data is rarely available in such diverse settings, making unsupervised methods appealing. In this work, we study unsupervised, schema-agnostic detection of resource usage anomalies in social event logs. We propose an efficient algorithmic approach to this end, and evaluate it with promising results on several log datasets of different event classes. Specifically, our contributions include a) formulation: a novel articulation of the schema-agnostic anomaly detection problem for event logs, b) approach: we propose FARE (Finding Anomalous Resources and Events), which integrates online resource anomaly detection and offline event culpability identification components, and c) efficacy: demonstrated accuracy (100% precision@250 on two industrial datasets from the Snapchat social platform, with 50% anomalies previously uncaught by state-of-the-art production defenses), robustness (high precision/recall over suitable synthetic attacks and parameter choices) and scalability (near-linear in the number of events).

Index Terms: misbehavior, event log, anomaly, schemaagnostic