AdverTiming Matters: Examining User Ad Consumption for Effective Ad Allocations on Social Media

Koustuv Saha, Yozen Liu, Nicholas Vincent, Farhan Asif Chowdhury, Leonardo Neves, Neil Shah, Maarten Bos
Event CHI 2021
Research Areas User Modeling & Personalization

Showing ads delivers revenue for online content distributors, but ad exposure can compromise user experience and cause user fatigue and frustration. Correctly balancing ads with other content is imperative. Currently, ad allocation relies primarily on demographics and inferred user interests, which are treated as static features and can be privacy-intrusive. This paper uses person-centric and momentary context features to understand optimal ad-timing. In a quasi-experimental study on a three-month longitudinal dataset of 100K Snapchat users, we find ad timing influences ad effectiveness. We draw insights on the relationship between ad effectiveness and momentary behaviors such as duration, interactivity, and interaction diversity. We simulate ad reallocation, finding that our study-driven insights lead to greater value for the platform. This work advances our understanding of ad consumption and bears implications for designing responsible ad allocation systems, improving both user and platform outcomes. We discuss privacy-preserving components and ethical implications of our work.